
Programming Techniques for
 Moving Scientific Simulation
 Codes to Roadrunner

Paul Woodward,
 Jagan Jayaraj, Pei-Hung Lin, and David Porter

Laboratory for Computational Science & Engineering

 University of Minnesota

Roadrunner Tutorial #5
 March 12, 2008

Special Features of PPM Numerical Algorithm:
1-D passes result in difference stencil that is
wide in the direction of the pass.
This suggests strategy for extreme pipelining.
Global communication needed only to set the
time step value, and out of date information
can be used.
This allows purely local communication and
eliminates all need for barrier synchronization.
Huge amount of computation performed in
order to deliver high accuracy.
This eases the memory bandwidth
requirement.

So How Do I Do That?
1-D passes can be used even in truly multi-D
numerical algorithms.
Evaluate all the X-derivatives in the X-pass.
Global communication is highly overrated, but
I admit that this view is controversial.
Even if you must do it, perhaps you can find
something to do while it is happening.
Huge amount of computation performed.
Everybody is doing a huge amount of
computation, but perhaps not all in the same
time step or in the same physics module.

So What is Special About Cell?
The challenge of Cell programming is almost
entirely derived from its very small on-chip
memory (the “local store”).
The aggregate performance of a Cell CPU is
also almost entirely derived from the small on-
chip memory.
Otherwise, the Cell SPE core can be viewed
as a scientific computing core. It has all you
need and not a single thing more.
(You really didn’t need all that on-chip
memory. Really. Believe me.)

Why can’t I just recompile my present code?
You probably can, but on Cell you probably
won’t like what you get.
Suppose that your code is “blocked for cache.”
This means that you operate on an on-chip data
context that is about 2 MB, and you rely on cache
hardware to push out what you no longer need
and draw in what you want automatically.
On Cell, you have 256 KB, 8 times less space,
and nothing is automatic. You want something
on chip, you get it. You want it off, you “put” it.

Cell SPE processing paradigm:
You explicitly lay out your data workspace.
You explicitly fetch data from memory into
local arrays.
You perform a computation that makes NO
references to any off-chip data.
You put results into local arrays.
You explicitly write these results back to main
memory arrays.
You must figure out how to REUSE all your
local, on-chip arrays. You must semi-
continuously empty and refill them.

YOU are in control:
Cell treats you like an adult.
The system software assumes that you know
what you are doing and does not attempt to
hide the complexity of the system from you.
If indeed you know what you are doing,
you will be rewarded with outstanding
performance.
IBM is building software to address use by
casual programmers, but for now, it is
reasonable to assume that there are no casual
Cell programmers.

This is a stream processing paradigm:
Data arrives semi-continuously and
asynchronously with respect to all processing.
Arriving data is stored in local named arrays
which are continuously refilled after they have
served their purpose for the data they contain.
This same use-and-refill model happens all the
way down the line – a modality that demands
fully pipelined processing.
As results appear at the end of the pipe, they
are written back to memory in a return
asynchronous stream.

This is exactly what you should have been doing:
This stream processing paradigm is optimal for
all cache-memory based machines.
You should have been doing it for the last 15
years.
Don’t feel bad, no one else was doing it either.
ONE REASON NO ONE WAS DOING
THIS IS THAT COMPILERS DO NOT
GENERATE THIS SORT OF CODE.
Compilers do not generate this type of code
because they need your help to do so and are
too proud to ask you for it.

Haven’t you been doing SOMETHING right?
Of course.
In this tutorial, we will not dwell on these
things, since you already know them.
We will therefore gloss over:
1)

Domain decomposition.

2)

MPI message passing.
3)

I/O
(here we give you the benefit of the doubt).

4)

Writing vectorizable loops.
We will only mention any of the above list to set

the context for the hard/new stuff.

General Plan of Computation:
Chop up the grid domain into “grid bricks.”
For simplicity, we will assign one grid brick to
each Cell processor.
We do 1-D passes in a symmetrized sequence
of XYZZYX.
In each pass, data is exchanged with only 2
neighbors, in the direction of the NEXT pass.
Messages are built as contiguous blocks of
data in memory and then dispatched all at
once as early as this is possible.
Actually having to wait for a message to arrive
is considered a programming failure.

General Plan for I/O:
A separate process is assigned to do all I/O for
a specific set of nodes (1 to 64, depending).
These processes can run on the Opterons,
which otherwise have nothing to do.
Data is compressed for output on the SPEs,
and aggregated and potentially reformatted by
the I/O processes on the Opterons.
This is also true for restart dumps, which
make use of the otherwise useless Opteron
memory to hold a problem image while it is
written out to disk as the code runs forward.

This Plan will Work on Anything:
If you design your Roadrunner code carefully,
you can run it on every system on earth.
But you have to be sure to maintain a standard
Fortran version of the Cell SPE code.
The Cell processor can be emulated in
OpenMP that will run on anything.
The Opteron functions will of course run on
anything and can be implemented as extra MPI
processes.
So you can leverage your effort in moving
your code to Roadrunner. You will see
improvements on every computing system.

Let’s Look at the Code for a single Grid Brick:
This is the code for a single Cell processor.
If we make this grid brick small enough, and
show that the code will still be efficient, you
can believe that the code will scale to a million
cores.
This would be just 128,000 processors.
We take a cubical brick of 32 cells on a side.
We will have, with our million cores, a grid for
the problem of 40×40×80 bricks, or of only
1280×1280×2560 cells.
This is “nothing.”

Each grid brick
of 323 cells is
decomposed into
83 sugar cubes
of 43 cells each.
On each Cell
processor, 8 CPU
cores cooperate
to update this
grid brick, using
shared memory
to facilitate the
process. We will
consider an
implementation

with 2 grid bricks per dual-Cell blade, and 4 per Roadrunner
node, because this is a simple and effective approach.

The Biggest Change is the Data
Structure.

Each CPU core
computes, based
upon its ID
number, which
slab of sugar
cubes, oriented
in the X-Z plane,
it will update in
the X-pass. The
updating of
these slabs
proceeds in
parallel. The top
plane is updated
first, so that the

results can be immediately dispatched as an MPI message
for use in updating the brick above this one in the Y-pass.

8 cores (different colors) simultaneously
update 8 strips of sugar cubes.

It requires less
coordination to
wait until both
the top and the
bottom planes of
sugar cubes
have been
updated before
dispatching both
MPI messages.
The messages
are constructed
in separate
arrays, so that
each one is a

large, contiguous block of data (a concatenation of sugar
cube records) that can be transmitted efficiently via MPI.

We update the bottom plane directly
after updating the top plane.

It takes 3 times
as long to
update the grid
brick interior as
it does to update
the top and
bottom planes of
sugar cubes.
This gives the
two MPI
messages gobs
of time to arrive
at their destina-
tions. They will
be needed at the

outset of the next Y-pass. We can count on them having
arrived at that point in the program, but we do insert “waits.”

We update the grid brick interior while
the MPI messages are in transit.

We cannot start
the Y-pass until
all the interior
grid planes are
updated in the
previous X-pass.
For simplicity, we
place a barrier
synchronization
at the end of the
full grid brick
update for the X-
pass, after which
we must wait on
the arrival of the

MPI messages from neighboring nodes in Y. Then we begin
with the Y-pass update of the near plane of sugar cubes.

We begin the Y-pass by updating the
near plane of sugar cubes, then the far.

Our barrier
synchronizing
the work of all 8
SPE cores on the
same Cell CPU is
very inexpensive,
since these can
communicate in
nanoseconds
with each other.
We wait on MPI
messages, but
we have NO
global barrier
synchronization

of our many MPI processes. That would be a disaster for
performance. And it is completely unnecessary.

We begin the Y-pass by updating the
near plane of sugar cubes, then the far.

Now let’s
consider the
process of
updating a single
strip of sugar
cubes on a single
Cell SPE core.

We show just
this single strip
of sugar cubes
on the next slide.

Our single-fluid PPM algorithm for flows of Mach 2 or lower
requires one ghost sugar cube at each end of our strip in
order to produce updated results in the central 4.

We prefetch one sugar cube while we unpack and operate on
the previous one cached in our local store.

We write back one updated sugar cube while we fill in values
in another one cached in our local store.

In preparation for the Y-pass, we transpose the internal
contents of each updated sugar cube record before writing it
back to the main memory.

We prefetch one sugar cube while we unpack and operate on
the previous one cached in our local store.

We write back one updated sugar cube while we fill in values
in another one cached in our local store.

Returning
updated
values

Being filled
with updated
values

Being
operated
upon

Being
prefetched

The sugarcube records shown at the bottom are in main
memory, while those above are in the SPU local store.

We build a grid-plane processing pipeline in the local store.

Returning
updated
values

Being filled
with updated
values

Being
unpacked

Being
prefetched

0-1-2-3-4

Local, on-chip data
workspace representing
5 active grid planes.

But how on earth do we write this program?

Returning
updated
values

Being filled
with updated
values

Being
unpacked

Being
prefetched

0-1-2-3-4

Local, on-chip data
workspace representing
5 active grid planes.

For our more complex, multi-fluid PPM code, we use
sugar cubes of just 23 cells and process them 4 at a time.

The brick at the left is in main memory, while the data indicated at the
right is in the local store.

The strategy I will set out in this tutorial goes as follows:

1. Write a program for updating all the values in just a single
grid cube.

2. This will require a ghost cube on each end for the X-pass.

3. Debug the program by making the single grid cube have a
large number of cells on each side, such as 32, 64, or 128.
This allows something debuggable to happen inside the
grid cube.

4. Transform the program via a standard procedure.

5. We are developing a
code transformation
tool to perform this
conversion from “slow
Fortran” to “fast Fortran”

Template PPM Code:

For simplicity, we will leave out the MPI
(you know how to do that already):

We will look at a code for a single grid brick.

We will use the sugar-cube data structure.

We will implement the parallel update of strips of sugar
cubes using OpenMP, so that this code runs everywhere.

The OpenMP implementation is extremely similar to the PPU-
SPU implementation for Cell, so this will be the Fortran
equivalent of the code for a single Cell processor.

We will focus on how we generate what becomes the highly
pipelined code for a single SPU.

Then we will show how we coordinate SPUs with the PPU.

This will take all our time.

Performance:

The only reason to care about this is performance.

So what is the performance?

PPMsloflo Slow & Fast Fortran Performance
10/12/07

PPMsloflo At Nx=128:
Adds/cell = 1065, Mults/cell = 1041, Rsqrts/cell = 3.19
Recips/cell = 43.22, Cvmgms/cell = 575. Variables/cell = 6.

3.0 GHz Clovertown, 4 MB cache, Slow Fortran:
Nx = 8, 6114 Mflop/s; 2990 flops/cell.
Nx = 16, 6078 Mflop/s; 2613 flops/cell.
Nx = 32, 2111 Mflop/s; 2426 flops/cell.
Nx = 64, 1546 Mflop/s; 2350 flops/cell.
Nx = 128, 1328 Mflop/s; 2302 flops/cell.

3.0 GHz Clovertown, 4 MB cache, Fast Fortran:
Nx = 8, 7202 Mflop/s; 2984 flops/cell.
Nx = 16, 7216 Mflop/s; 2603 flops/cell.
Nx = 32, 7201 Mflop/s; 2418 flops/cell.
Nx = 64, 6289 Mflop/s; 2322 flops/cell.
Nx = 128, 6178 Mflop/s; 2281 flops/cell.

The Slow
Fortran
computation
will not fit
into a Cell
SPU local
store at any
of the listed
sugar cube
sizes. On
Cell there is
no choice.

Comments on PPMsloflo Slow & Fast Fortran Performance

The slow Fortran code is very much easier to write, debug,
modify, and maintain.

When the grid brick is as small as 163 cells, the entire update
fits into the 2 MB cache, and the performance jumps up to 6.1
Gflop/s.

The performance figures on the previous slide are for doing an
entire problem of the quoted grid size, not just a subdomain of
a larger problem.

When the problem domain is only a cube 16 cells on a side, the
entire grid fits into the on-chip cache. This performance is not,
however representative of what we will achieve with this code
when we ask it to update a sequence of grid cubes of 163 cells
each which make up a larger problem domain. That task will
require a great deal of traffic between the CPU and the main
memory. The performance for that much harder and much
more useful task is shown on the next slide.

PPMsloflo Slow & Fast Fortran Performance
5/14/08

Nx = size of problem domain, N = size of grid briquette
OMPm indicates OpenMP with m threads

PPMsloflo At Nx=128:
Adds/cell = 1065, Mults/cell = 1041, Rsqrts/cell = 3.19
Recips/cell = 43.22, Cvmgms/cell = 575. Variables/cell = 6.
A few additional flops come from preparation of the output data at
intervals of 40 time steps.

3.0 GHz Clovertown, 4 MB cache, Slow Fortran:
Nx = 128, OMP2 N = 16, 3508 Mflop/s/core; 2647 flops/cell.
Nx = 128, OMP4 N = 16, 3478 Mflop/s/core; 2645 flops/cell.
Nx = 128, OMP8 N = 16, 1556 Mflop/s/core; 2644 flops/cell.

3.0 GHz Clovertown, 4 MB cache, Fast Fortran:
Nx = 128, OMP2 N = 4, 6065 Mflop/s/core; 2314 flops/cell.
Nx = 128, OMP4 N = 4, 6104 Mflop/s/core; 2309 flops/cell.
Nx = 128, OMP8 N = 4, 5993 Mflop/s/core; 2309 flops/cell.

Comments on PPMsloflo Slow & Fast Fortran Performance

The slow Fortran code is very much easier to write, debug,
modify, and maintain.

When we ask all 8 CPU cores in the 2 processors sharing a
common memory in a PC workstation to cooperatively update a
suefully large problem (1283 cells is actually not large at all),
then we find the true limitation of Slow Fortran – the main
memory bandwidth that it unreasonably requires.

In this case we discover that for Slow Fortran, the 8 cores solve
the fluid flow problem more slowly than if we leave 4 of the 8
cores completely idle.

However, for Fast Fortran, each of the 8 cores delivers its full
potential in this cooperative computation, so that all 8 taken
together outperform the same 8 cores running the same
problem in Slow Fortran by a dramatic factor of 4.41
(accounting both for the higher Mflop/s rate of each core and
also the smaller number of flops that need to be performed in
the Fast Fortran implementation).

PPMsloflo Slow & Fast Fortran Performance
2/1/08 Nx = size of entire problem domain

PPMsloflo At Nx=128:
Adds/cell = 1065, Mults/cell = 1041, Rsqrts/cell = 3.19
Recips/cell = 43.22, Cvmgms/cell = 575. Variables/cell = 6.

3.0 GHz Clovertown, 4 MB cache, Slow Fortran (only 1 thread):
Nx = 8, 6114 Mflop/s; 2990 flops/cell.
Nx = 16, 6078 Mflop/s; 2613 flops/cell.
Nx = 32, 2111 Mflop/s; 2426 flops/cell.
Nx = 64, 1546 Mflop/s; 2350 flops/cell.
Nx = 128, 1328 Mflop/s; 2302 flops/cell.

3.2 GHz Cell SPU, 256 KB cache, Fast Fortran (16 SPUs coop):
Nx = 32, 7.73 Gflop/s; 2418 flops/cell.
Nx = 64, 5.50 Gflop/s; 2322 flops/cell.
Nx = 128, 5.68 Gflop/s; 2281 flops/cell.
We believe the performance jumps up for the small bricks on
Cell because there are suddenly no TLB misses.

16 Slow Fortran
threads do not
achieve this same
high performance
per core.

16 threads all beat
on the shared
memory here.

PPMsloflo Slow Fortran Laptop Performance
11/4/07

PPMsloflo At Nx=128:
Adds/cell = 1065, Mults/cell = 1041, Rsqrts/cell = 3.19
Recips/cell = 43.22, Cvmgms/cell = 575. Variables/cell = 6.

2.4 GHz Core Duo, 4 MB cache, Slow Fortran:
Nx = 128, N = 8, No OMP 4154 Mflop/s; 3021 flops/cell.
Nx = 128, N = 16, No OMP 3862 Mflop/s; 2643 flops/cell.
Nx = 128, N = 16, OMP2 5066 Mflop/s; 2643 flops/cell.
Nx = 128, N = 16, OMP1 3336 Mflop/s; 2643 flops/cell.
Nx = 128, N = 128, No OMP 1328 Mflop/s; 2302 flops/cell.

I spent a week trying every possible way to improve performance on
this slow Fortran expression by using both cores in the Laptop CPU.
The key turned out to be putting the working data for each thread
onto the stack rather than in a “threadprivate” common block.
This is the difference between “OMP1” and “OMP2” above.
The 5 Gflop/s looks pretty good for a laptop, but . . .

PPMsloflo Fast Fortran Laptop Performance
11/4/07

PPMsloflo At Nx=128:
Adds/cell = 1065, Mults/cell = 1041, Rsqrts/cell = 3.19
Recips/cell = 43.22, Cvmgms/cell = 575. Variables/cell = 6.

Stack = private workspace on stack.

2.4 GHz Core Duo, 4 MB cache, Fast Fortran:
Nx = 64, N = 4, OMP2, stack 9754 Mflop/s; 2354 flops/cell.
Nx = 64, N = 4, No OMP, stack 5024 Mflop/s; 2354 flops/cell.
Nx = 128, N = 4, OMP2, stack 9539 Mflop/s; 2308 flops/cell.
Nx = 256, N = 4, OMP2, stack 9037 Mflop/s; 2270 flops/cell.
Who would have believed that my laptop could do 9.75 Gflop/s?

Here we see the benefit of Fast Fortran for a multicore Intel CPU.
It reduces the main memory bandwidth requirement.

PPMsloflo Fast Fortran Workstation Performance
11/4/07

PPMsloflo At Nx=128:
Adds/cell = 1065, Mults/cell = 1041, Rsqrts/cell = 3.19
Recips/cell = 43.22, Cvmgms/cell = 575. Variables/cell = 6.

Stack = private workspace on stack.

The per-core performance for 8 threads is only 3.5% lower than for 4
threads. Hence there can be very little contention for the main
memory bus in this parallel application.

3.0 GHz Clovertown, 4 MB cache, Fast Fortran:
Nx = 128, N = 4, OMP4, stack 23.89 Gflop/s; 2292 flops/cell.
Nx = 128, N = 4, OMP8, stack 46.09 Gflop/s; 2292 flops/cell.
Nx = 256, N = 4, OMP8, stack 46.31 Gflop/s; 2270 flops/cell.
Nx = 512, N = 4, OMP8, stack 42.00 Gflop/s; ???? flops/cell.

What you get on four 8-core PC workstations in 4 days of
running the 2-fluid PPM on a 5123 grid OpenMP+MPI:

The following slides show results (at dump 400, 5147 sec.) of
deep convection (9 Mm to 30 Mm) in the white-dwarf-like core
of a 2 solar mass star near the end of its life.

The convection zone above the helium burning shell has engorged
all the previously processed material, so that it now begins to
entrain the 2.6 times more buoyant unburned hydrogen fuel.

The mixing fraction of unburned hydrogen is shown in two
opposite hemispheres on the next 2 slides, and a convection
pattern that is nearly global in scale is revealed.

Darker colors show the bottoms of descending sheets of cooler gas
that separate the 4 very large convection cells.

A thin slice through the volume shows the depth to which the
entrained lighter gas descends – well beyond the level where
vigorous nuclear burning would take place.

Finally, the magnitude of vorticity and the radial component of the
velocity are shown in this same slice.

32-bit arithmetic is just fine:
A key to high performance on all of today’s microprocessor

CPUs is 32-bit arithmetic.

Codes must be carefully written to make this practical.

On the following slides, we show comparisons of the same
single-mode Rayleigh-Taylor test problem (IWPCTM-11 test
problem 1) computed first with 64-bit arithmetic and then in
the second of each slide pair with 32-bit arithmetic.

The heavy gas was 5/3 as dense as the light one in this
problem, and we view the developing flow along a diagonal
at times noted in each slide. Here the time unit is the sound
crossing time of the width of the problem domain in the
lighter fluid at the midplane in the initial state.

The grid used in each case was 64×64×512, and a volume
rendering of the mixing fraction of the two fluids is shown.

32-bit arithmetic is just fine:
This flow of the gas of density 5/3 initially superposed above a

gas of density 1 in a gravitational field is highly unstable.

The physical instability will exponentially amplify tiny
differences in the fluid states of the two simulations as time
progresses.

Nevertheless, blinking the images back and forth reveals
essentially no differences until 37.5 sound crossing times,
when the instability has progressed far into the nonlinear
regime.

Differences between the two simulations are not really
noticeable until 62.5 sound crossing times, and even at this
time they are only minor differences of detail.

We conclude that 32-bit arithmetic is just fine for this problem
with this very carefully written code that makes this OK.

t = 0

64-bit

t = 0

32-bit

t = 12.5

64-bit

t = 12.5

32-bit

t = 25

64-bit

t = 25

32-bit

t = 37.5

64-bit

t = 37.5

32-bit

t = 50

64-bit

t = 50

32-bit

t = 62.5

64-bit

t = 62.5

32-bit

Slow Fortran to Fast Fortran Concept:
Write the program in the simplest possible way, regard-

less of how inefficiently it will execute when simply compiled
with a standard compiler and run on a single processor.

Compute all intermediate quantities on the full 3-D grid,
regardless of the waste and inefficiency this implies.

Debug the code for correctness exploiting this simple form.

When the code is correct, transform it automatically from
this “Slow Fortran” expression into “Fast Fortran.”

Compile the Fast Fortran to run on mainstream processors
as a single-processor module in a parallel program.

Transform the Fast Fortran into Cell-C, with automatic
translator, and hand it to the GCC compiler for the Cell SPU.

Use this SPU-module in a parallel Cell program.

Operational Details:
By changing parameters in dimension statements, the

Slow Fortran program can update the entire grid.

On modern laptops this will allow the grid to be as large as
1283 cells, which is more than sufficient for debugging.

Performance will be in the range from 640 to 1330 Mflop/s,
so that test runs do not take too long.

For tiny domains, such as 163 cells, a mainstream processor
cache will contain the whole data context, and performance
can jump as high as 4 Gflop/s.

An outer program of the same type that supports parallel
execution of the Fast Fortran module can also support
parallel execution of the Slow Fortran one on bricks of 163.

OpenMP can be introduced as well, with threads pinned to
cores, as long as temporary arrays are on the stack.

Walk through outer code:
Although this was planned, we did not do this at the March 12

tutorial.

The outer code has the MPI message passing, and is not a
programming style that is unfamiliar to this community.

Therefore we skipped this planned section.

Walk through Xpass1 code:
This exercise also was skipped, as this is just a sequence of

calls to vanilla Fortran subroutines that is also not unusual.

Walk through PPMsloflo code:
This exercise we did actually do. This is the single subroutine

that includes essentially all the computation of the code.

Our present code uses the Fortran pre-processor to produce
from a single source three separate codes, depending upon
the settings of various flags:

1. The code for the Cell processor SPU, which consists
essentially entirely of the single routine PPMsloflo (a bit
over 5000 Fortran lines, not counting comments).

2. The code for the PPU, which coordinates the SPUs and
signals the Opteron that MPI messages have been fully
composed in their buffers in the blade memories. The PPU
also computes the initial state for the simulation.

3. The Opteron code, which does all MPI library calls and
handles all I/O, including output and restart dumps.

Slow Fortran Version of PPMsloflo:
3-D Loop Nests:

Code “basic block” is a 3-D loop nest of the form below, in
which ny*nz is an integer multiple of 4.

Scalar temporaries are used extensively in such loops.

do i = 1+ioffl-nbdy,nx+nbdy-ioffr
do k = 1,nz

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do j = 1,ny
al(j,k,i) = (a(j,k,i-1) + a(j,k,i)) * .5
enddo
enddo
enddo

Slow Fortran 2:
Order of 3-D Loop Nests:

Loop nests are ordered so that the sum ioffl+ioffr increases
from one loop nest to the next. This is a completely natural
ordering for almost all numerical algorithms, as it expresses
an informational “light cone” arising from causality.

do i = 1+ioffl-nbdy,nx+nbdy-ioffr
do k = 1,nz

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do j = 1,ny
al(j,k,i) = (a(j,k,i-1) + a(j,k,i)) * .5
enddo
enddo
enddo

Slow Fortran 3:
Syntax Restrictions (to ease automatic translation):

Continuations allowed only in SUBROUTINE statements.

Only 2 permitted forms of vectorizable logic, equivalent to
Cray’s original cvmgm and cvmgz intrinsics.

No more than 2 arithmetical operators per line.

Intrinsic function call requires separate line.

Arithmetic must read correctly left to right with parentheses
ignored.

No common blocks allowed in code to be translated.

3-D arrays of a standard, conformal shape may be designated
within storage arrays by means of equivalences.

Restrictions apply only to code to be automatically
translated to Cell-specific C for the SPU.

Slow Fortran 4:
Array Dimensioning Using Parameters, Not Variables:

dimension A (ny, nz, 1-nbdy:nx+nbdy)

If A is a subroutine argument, it is good programming
practice for nx, ny, and nz to be arguments also.

However, for performance of the compiled code, it is best for
nx, ny, and nz to be parameters set to constant values.

All arrays A that are locally allocated must be allocated on the
stack, if an OpenMP thread executing this code is to perform

This may require a compile-time specification of the stack size
limit for the linker.

These rules of Slow Fortran guarantee proper data alignment,
generated by the mainstream Fortran compiler, and they
avoid “known” previous bugs in the Intel compiler.

Slow Fortran 5:
Syntax Restrictions, continued:

Each serial data copy from or to main memory is expressed in
a separate loop, preceded by a DMA directive and with this
expression made possible by an equivalence statement.

Example:

dimension Dvar(ny,nz,1-nbdy:nx+nbdy,nvars)
dimension Dvars(ny*nz*(nx+2*nbdy)*nvars)
equivalence (Dvars,Dvar)
lenvars = ny*nz*(nx+2*nbdy)*nvars

cPPM$ DMA
do i = 1,lenvars
Dvars(i) = whatever(ioff+i)
enddo

cPPM$ END DMA

Here Dvars is on the stack and hence will be cache resident.

First PPM Loop Nest:
do i = 1-nbdy,n+nbdy
do k = 1,n

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do j = 1,n
pv = p(j,k,i) / rho(j,k,i)
ceulsq = gamma * pv
ceul2i(j,k,i) = 1. / ceulsq
ceul = 1. / sqrt(ceul2i(j,k,i))
c(j,k,i) = ceul * rho(j,k,i)
. . .
enddo
enddo
enddo

Here we get the sound speeds from the density and pressure.
This is done in all the cells and all the ghost cells.

Second PPM Loop Nest:
do i = 2-nbdy,n+nbdy
do k = 1,n

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do j = 1,n
cl(j,k,i) = (c(j,k,i-1) + c(j,k,i)) * .5
clinv(j,k,i) = 1. / c(j,k,i)
temp = (p(j,k,i) – p(j,k,i-1)) * clinv(j,k,i)
drplsl(j,k,i) = (ux(j,k,i) – ux(j,k,i-1)) + temp
. . .
enddo
enddo
enddo

Here we compute Riemann invariant differences. We require 2
planes of results from the previous loop nest. Hence we
must execute the inner loops of that nest twice before we
may execute the inner loops of this nest for the first time.

Third PPM Loop Nest:
do i = 2-nbdy,n+nbdy-1
do k = 1,n

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do j = 1,n
dasppm(j,k,i) = (drplsl(j,k,i) + drplsl(j,k,i+1))
& * .5
a6sppm(j,k,i) = (drplsl(j,k,i) - drplsl(j,k,i+1))
& * .5
. . .
enddo
enddo
enddo

Here we compute interpolation coefficients. We require 2 planes
of results from the previous loop nest. Hence we must
execute the inner loops of that nest twice before we may
execute the inner loops of this nest for the first time.

Third PPM Loop Nest, Right Justified:
do i = 3-nbdy,n+nbdy
do k = 1,n

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do j = 1,n
dasppm(j,k,i-1) = (drplsl(j,k,i-1) + drplsl(j,k,i))
& * .5
a6sppm(j,k,i-1) = (drplsl(j,k,i-1) - drplsl(j,k,i))
& * .5
. . .
enddo
enddo
enddo

When we fuse all the outer loops on i we may now just place
before the inner loops of this nest a test:

if (i .lt. 3-nbdy) go to 9000

Elimination of Unnecessary Storage:
isave = i2m2
i2m2 = i2m1
i2m1 = 12m0
i2m0 = isave
if (i .lt. 3-nbdy) go to 9000

!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED

do jk = 1,n*n
dasppm(jk,i2m1) = (drplsl(jk,i2m1)
& + drplsl(jk,i2m0)) * .5
a6sppm(jk,i2m1) = (drplsl(jk,i2m1)
& - drplsl(jk,i2m0)) * .5
. . .
enddo

Only 3 grid planes of drplsl are ever referenced. Hence all but
these are unnecessary. We use integer variables to represent
these grid planes, and they act like pointers. Note the barrel
shift operation on each outer loop traversal.

Code Transformation Steps:

1. Write code for a single grid briquette.

2. Dimension all variables over the entire briquette + ghosts.

3. Inline all subroutines.

4. Order the loops to reflect causality. Largest extents in index
i come first.

5. Right-justify all outermost loops and fuse inner loop pairs.

6. Fuse all outermost loops, inserting jumps to end (9000).

7. Identify live planes for all temporary arrays. Then change
references to i-3, etc., to i5m3, or whatever. Revise
dimension statements to collapse storage. Insert barrel
shifts at outset of each outer loop traversal & initialize
integer pointer variables before outer loop.

Outer Parallel Code:

1. Write wrapper around code for a single grid briquette.
This prefetches and fetches briquette records, unpacks them,
applies boundary conditions (sets ghost cells),
performs briquette plane update, constructs new briquette
record, which may be transposed, and writes back new
briquette and copy, if needed, for MPI message.
All this executes in the SPU.

2. Write wrapper around the above code.
Based upon number of my OpenMP thread, compute which
strips of briquettes to update. Call the above code to update
a strip of briquettes repeatedly, keeping all 8 SPUs busy.
Signal readiness of MPI message portion. Signal when done.
All this executes in the SPU. PPU handles the signals.

3. All message passing, I/O, and restart dump writing in AMD.

We believe that we have now learned
what works.

Now we need to lessen the
programming burden.

1. Automate readable, maintainable,
modifiable Fortran to Fast Fortran.

2. Automate Fast Fortran to Weird C
(we have mostly done this part).

3. Parallel implementation still manual.
This too could be automated.

Possible HPC Programming Model:
1.

Certain subroutines and all routines they call designated for SPU.

2.

Master OpenMP

thread executed by PPU, which manages SPU slaves,
implemented as subsidiary OpenMP

threads before translation.

3.

Master OpenMP

thread in a team executed partially on Opteron

and
partially on PPU. This splitting of the master thread’s tasks is peculiar
to Roadrunner. Only the PPU deals with SPU thread creation and
coordination. Only the Opteron

executes MPI library calls. The
Opteron

tranmits

data between its and the Cell blade’s memories via
DaCS

library calls (peculiar to Roadrunner).

4.

I/O handled by separate MPI process or processes on Opterons.

a.

This seems to be the cleanest implementation.

b.

Allows fewer than one such process per node on large systems.

c.

Consolidates and reformats data, then streams it out of system.

5.

Restart dumps handled by separate MPI process on Opteron

at each
node, overlapped with continued code execution.

An Example Code:
It is our intent to produce and make available a fairly readable

example code
that illustrates the points made in this tutorial.

Such a code, with a full Roadrunner parallel implementation, is not yet
available, but will be generated from a simplification of the multifluid

 PPM code we plan to run on the full Roadrunner configuration in June.

At the moment, the best we can do is to make available a 3-D PPM code for
flows Mach 2 and below that is implemented in both slow and fast

 Fortran.

This is a code appropriate to run on a dual-core laptop rather than on
Roadrunner, but it illustrates the most unusual features that are
discussed in these slides, namely the transformation of the code

destined
for the Cell SPU from a slow to a fast Fortran expression.

This code contains a simplified outer code that runs the slow Fortran version
in a cache-blocked mode. Alternatively, this same outer code, with a
different setting of the parameters defining the size of grid sugar cubes,
runs the fast Fortran version. Flop counts are reported by the code.

The Example Code:
The example code is located at www.lcse.umn.edu/RR

and is to be made
available only through the Los Alamos Roadrunner tutorial Web site.

http://www.lcse.umn.edu/RR

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78

